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Stretched exponential relaxation in a diffusive lattice model
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We studied the single dimer dynamics in a lattice diffusive model as a function of particle density in the high
densification regime. The mean square displacement is found to be subdiffusive both in one and two dimen-
sions. The spatial dependence of the self-part of the van Hove correlation function displays as a function ofr
a single peak and signals a dramatic slow down of the system for high density. The self-intermediate scattering
function is fitted to the Kohlrausch-Williams-Watts law. The exponentb extracted from the fits is density
independent while the relaxation timet follows a scaling law with an exponent 2.5.

DOI: 10.1103/PhysRevE.65.026127 PACS number~s!: 05.10.Ln, 05.40.2a, 64.70.Pf, 61.20.Ja
re
ei
o

sp

n
st
ua
o

id

p
n
in
vi
er

u
s
u
b

re
ca
g

di

u
fo
ity
, t
ie
tio

ers
the

ith

of

o
em,
nd
or
ly

o

can
oth
dif-

the

MC
-
for

ith
ties
95,

tant
ion
of
b-
u-
the

ran-
ion
y as

l a
I. INTRODUCTION

Lattice-gas models of dense fluids have been explo
@1–3# in order to understand the microscopic details of th
slow dynamics and to compare them with the behavior
other disordered systems like structural glass formers,
glasses, and colloids.

Among the lattice modelsrandom sequential adsorptio
~RSA! of particles on a substrate is of particular intere
RSA has been invented to mimic many experimental sit
tions like chemisorption on crystal surfaces, reactions
polymer chains, adsorption of macromolecules and collo
particles, monolayer and multilayer growth processes~for an
an extensive review see@4,5#!. In particular RSA with added
diffusion ~RSAD! has been considered a model which ca
tures the main features of the compaction dynamics in gra
lar matter@6#. The description of the relaxation processes
the RSAD model has been investigated through the beha
of the time density correlation function in a limited numb
of studies and only during the deposition process@7,8#.

In this paper we explore by computer simulation the eq
librium dynamical properties of a lattice gas of dimers a
function of density in two dimensions. The starting config
rations have been produced with a RSAD model where
deposition and diffusion of particles we reach the desi
value for the density. In this way, due to the geometri
frustration, as the dimer density increases trapping confi
rations that only depend on the local environment@9# are
created in the system. The dynamical properties are stu
by switching the deposition off.

In Sec. II we describe the model and the details of o
Monte Carlo simulation. In Sec. III we present our results
the single dimer dynamics as a function of particle dens
In particular we analyze the mean square displacement
Van Hove self-correlation function and its space Four
transform, the self-intermediate scattering function. Sec
IV is devoted to concluding remarks.

*Author to whom correspondence should be addressed. Emai
dress: rovere@fis.uniroma3.it
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II. MODEL AND COMPUTATIONAL DETAILS

In order to investigate the dynamical properties of dim
on a square lattice with fixed density we have generated
starting configurations through a RSA model of dimers w
diffusion in two dimensions~RSAD-2D! @9,10# by Monte
Carlo ~MC! simulations. We also performed simulations
the same model in one dimension~RSAD-1D! for compari-
son. We have considered a square lattice ofN5L3L sites,
with periodic boundary conditions in both directions. Tw
kinds of dynamical processes can occur in the syst
namely deposition of a dimer on an empty pair of sites a
diffusion of a deposited dimer on an empty first neighb
site; no overlap of dimers is allowed. The lattice is initial
empty and at each MC step one deposition event~or one
diffusion event! is selected with probabilityp ~or 12p!,
where 0,p<1. Dimers can be adsorbed on the lattice in tw
possible orientations~horizontal and vertical! and can diffuse
along their own axis. In the case of deposition, the dimer
occupy a randomly selected pair of sites if they are b
empty, otherwise the attempt is rejected. In the case of
fusion the randomly selected horizontal~vertical! particle at-
tempts to move left or right~up or down!, with equal prob-
ability. A diffusion event to the right~left! or up ~down! is
possible only if the chosen pair of sites is occupied and
corresponding right~left! or up ~down! neighbor site is
empty, otherwise the attempt is rejected. As usual the
time unit corresponds toN deposition and/or diffusion at
tempts. We checked that finite-size effects are negligible
L>40, so in the following we analyze a square lattice w
L540. We produced 11 starting configurations at densi
r50.60, 0.70, 0.75, 0.80, 0.88, 0.94, 0.96, 0.98, 0.99, 0.9
0.998. For each configuration, production runs at cons
density have been obtained by switching the deposit
events off. In this way we are able to follow the dynamics
the system in an equilibrium situation. In fact, the equili
rium distribution for this system, where all allowed config
rations have the same weight, is a constant. Therefore
detailed balance condition reduces to two requirements: t
sitions to forbidden states are not allowed, and transit
from an allowed state to another has the same probabilit
d-
©2002 The American Physical Society27-1
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the reverse one. Both these requirements are satisfied b
adopted algorithm. A more complete investigation of the
reversible dynamics of these models and discussion of
role of the dimensionality is presented elsewhere@9#.

III. SINGLE DIMER DYNAMICS

In this section we investigate the dynamical behavior
this lattice model through the single dimer density corre
tors. We have chosen relatively large values of the den
(r>0.60), since we are interested in the diffusive dynam
of the system in the high densification regime where sl
dynamics is more likely to occur. The time over which t
diffusive motion of particles has been followed reaches,
most cases, 106 MC time units ~because of the statistica
noise in the last decade onlyt up to 105 is shown in the
plots!.

A. Diffusion properties

We analyze in the following the mean square displa
ment ~MSD! of the particle,̂ r 2(t)&, defined as

^r 2~ t !&5
1

Npart
K (

i 51

Npart

ur i~ t !2r i~0!u2L , ~1!

whereNpart5Nr/2 is the number density,r i is the position of
particle i at time t, and^ & denotes a time average. In Fig.
we show a log-log plot̂ r 2(t)& for RSAD-2D for the differ-
ent densities investigated. After an initial transient, which
more pronounced at high densities, the temporal behavio
the MSD can be fitted with two power laws. In the first tim
region ^r 2(t)&;td1. In the intermediate time region for th
lower densities the MSD shows a bend followed by a sli
increase in the exponent, i.e.,^r 2(t)&;td2 with d2.d1 ,
where the exponents depend upon density. The bend
comes more evident as the density increases. Values od1

FIG. 1. Log-log plot of the temporal evolution of the MSD fo
several different densities:r50.60, 0.70, 0.75, 0.80, 0.88, 0.94
0.96, 0.98, 0.99, 0.995, 0.998 from top to bottom. Long-das
lines are the fits to power law behavior in the two time regions fr
5 to 120 MC time steps and from 1000 to 60 000 MC time ste
For the sake of clarity, fits are reported only for even curves. T
exponents extracted from the fit are reported in Table I.
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andd2 are reported in Table I. They are less than 1 for all t
densities considered: in particular,d1 andd2 do not exceed,
respectively, 0.75 and 0.80, which are the values found
the lowest density, i.e.,r50.60. The difference between th
two exponents is more marked for intermediate densi
(0.80,r,0.96). For the highest density (r50.998) the
MSD shows a plateau for large times. In the time regi
investigated none of the curves shown attains the Brown
diffusive regime,d251.

These findings can be interpreted in terms of the den
characterizing the degree of motion of particles like the th
mal energy in thermal systems. For low densities single p
ticles can move freely and the diffusive dynamics is alm
independent of time. Increasing the density particles rem
trapped in local transient configurations@9,10# and diffusion
slows down. For very high density the trapping configu
tions are frozen and the system does not evolve any mor
the time scale of our simulations. The existence of trapp
configurations and subdiffusive behavior is in general link
to the presence of disorder@11# that in the present case ca
be ascribed to the random barriers associated with the l
environment determined by the geometrical constraints.
particle has to overcome these barriers and spend a long
before detrapping~see@12# for an analogous case in a ran
dom walk model!.

These dynamical features are not present in the RSAD
model, where we have found a MSD with a density indep
dent slope for this case. Nevertheless the behavior is sub
fusive, with an exponentd50.5 constant over the whole
time window investigated.

B. Density correlator

For a closer analysis of the motion of the dimer we ha
considered the self-part of the van Hove correlation funct
~SVHCF! Gs(r ,t), defined as

Gs~r ,t !5
1

Npart
K (

i 51

Npart

d„r 2ur i~ t !2r i~0!u…L , ~2!

which gives the probability of finding a particle around
distancer at time t, given that the same particle was at th
origin at time t50. The MSD analyzed in Sec. III A is the

d

.
e

TABLE I. Values of the exponents extracted from the fit to t
power law of the MSD plotted in Fig. 1.

Density d1 d2 d2 /d1

0.60 0.75 0.80 1.07
0.70 0.72 0.80 1.11
0.75 0.67 0.79 1.18
0.80 0.64 0.79 1.23
0.88 0.60 0.74 1.23
0.94 0.54 0.70 1.30
0.96 0.52 0.67 1.29
0.98 0.51 0.60 1.18
0.99 0.51 0.48 0.94
0.995 0.51 0.38 0.75
7-2
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STRETCHED EXPONENTIAL RELAXATION IN A . . . PHYSICAL REVIEW E65 026127
second spatial moment of the SVHCF. Nonetheless, in
ordered diffusive systems that do not have a simple beha
the SVHCF might contain additional information on the m
croscopic relaxation mechanisms of the system, which co
be smeared out in the MSD.

The SVHCF is shown for our system in Fig. 2 for fou
densities at different times. We have calculated the one
mensional SVHCF along the horizontal or the vertical dire
tion. In Fig. 2 we show the SVHCF averaged over the t
directions. The self-correlation function shows a single pe
centered around zero for all the times investigated. The
pearance of more than one peak at a given time would h
evidenced the existence of more than one, well distinct,
laxation mechanism for that time. The single peaked str
ture confirms the dynamics to be mastered only by a sin
mechanism related to the existence of high entropic barr
generated by configurations in which a particle is loca
trapped. It is also seen that at low density the SVHCF
localized at short distances~typically 1<r<2! for short
times and tends to delocalize for large times, since it is a
to explore more configurations. At higher densities we o
serve a ‘‘clustering’’ of the various curves for 1<r<2.5 @this
effect is particularly evident in Fig. 2~d!#: this is the signa-
ture of the fact that the movement of particles drastica
slows down at such densities.

C. Intermediate scattering function

The space Fourier transform of the SVHCF, i.e., the s
intermediate scattering function~SISF! Fs(q,t), is given by

Fs~q,t !5
1

Npart
(
i 51

Npart

exp$ iq•@r i~ t !2r i~0!#%, ~3!

where q5(qx ,qy) is the discrete wave vector~qx,y
52pnx,y /L with nx,y an integer between 0 andL21!. For

FIG. 2. Spatial dependence of the SVHCFGs(r ,t) for different
densities:r50.60 ~a!, r50.80 ~b!, r50.88 ~c!, and r50.98 ~d!.
The curves in each graph correspond to various times:t53, 15, 63,
127, 511, 1023~in MC time units! from top to bottom on the left
side of each graph. Distances on the horizontal axis are measur
lattice spacing units.
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all the densities considered in the simulations, the smalleq
is, the more slowlyFs(q,t) is found to decay. We show in
Fig. 3 data forq5„2p(L21)/L,0… at several different den
sities. Thisq value is chosen of the order of the inverse of t
typical size of the trapping region, which we estimate to
of the order of 2–3 lattice spacings@9#. As can be seen, the
entire dynamical behavior at low-intermediate densities
observed in the time window of our simulations, since t
SISF decays to zero for such densities. For high values of
density only a part of the SISF can be observed, due to
very slow dynamical relaxation and the freezing of partic
which is also evident in the MSD. The short-intermedia
time behavior of SISF can be fitted with a Kohlrausc
Williams-Watts law~KWW!

Fs~q,t !.exp@2~ t/t!b#, 0,b<1. ~4!

The curve resulting from this fitting, also shown in Fig.
reproduces the data obtained from MC simulations quite
curately for several decades. A deviation of MC results fro
Eq. ~4! is observable only in the tails of the correlators. T
collapse of correlators onto a single curve when plotted v
sust/t(r) demonstrates the existence of a well defined sc
ing law on several decades for this kind of systems. In
range of density considered, the stretching exponentb is
essentially constant, with a value;0.68, the density depen
dence being reflected only in the relaxation timet.

Furthermore, we have found that the behavior oft versus
r follows the scaling law

t21.A~rc2r!g. ~5!

This fit is shown in the inset of Fig. 3 together with th
points determined from the parameters of Eq.~4!. As can be
seen from the figure, Eq.~5! applies satisfactorily in the en
tire range of densities considered. Our estimates y
A.0.0023,g.2.5, andrc.1.0. Given the uncertainties in

in

FIG. 3. Temporal evolution of the SISFFs(q,t) for q5„2p(L
21)/L,0…. The solid curves correspond to the result of the simu
tions for different densities:r50.60, 0.70, 0.75, 0.80, 0.88, 0.94
0.96, 0.98, 0.99, 0.995, 0.998. The long-dashed curves are fits t
data according to Eq.~4!. In the inset it is shown the inverse relax
ation time vs density: the squares are the parameters obtained
the fit to Eq.~4! for various density, while the solid curve is the be
fit according to Eq.~5!.
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the fit, this value found forrc cannot be distinguished from
the maximal density reachable in this system, which
been found to be'0.998 in numerical simulations~see
@9,10#!. This would suggest that there is no dynamical tra
sition in this model, i.e., no critical density~lower than the
maximal density! exists at which a structural arrest of th
system occurs. It is important to stress that the relaxa
time obeys the power law equation~5!, which has the same
kind of scaling found in many glassy systems and is
signature of a sluggish dynamical behavior. The existenc
a power law behavior fort as a function of density and th
validity of the KWW law are novel and interesting points f
systems of this kind. It would be interesting to investigate
the future thet and b dependence on the wave vector
check on the range of validity of both the KWW law and
the power law.

IV. CONCLUSIONS

We presented a Monte Carlo study of the single dim
density correlators for a randomly diffusive model of dime
on a square lattice as function of density. For each den
the starting configurations have been generated throug
RSAD-2D model. We found that the dynamical behavior
related with the system dimensionality and that the diffus
dynamics is non-Brownian for the time regimes investigat
In spite of its simplicity the model considered shows a qu
complex dynamical behavior, and in particular some featu
t

ys
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resembling that of the slow relaxation of structural gla
formers are found.

The most interesting results came from the SISF analy
We have found that this correlator in theq,t space has a wel
defined scaling behavior with density that can be descri
with a high degree of accuracy by the KWW function
most of the time region investigated. This function is w
known to reproduce many features of disordered syste
and is connected to fractality in configurational spa
@13,14#. The exponent of the stretched exponential funct
b is density independent and the relaxation time follows
power law with an exponentg in the range of those of struc
tural glass formers@13#. The power law predicts a divergenc
of the relaxation time for density around 1. From these fin
ings it can be consistently derived that for this nontherm
system the role of thermal energy is played by the densi

We correspondingly find a subdiffusive behavior in t
MSD. The slowdown of the system that becomes more s
nificant as density is increased can be attributed to trans
trapping configurations. We point out that with respect
lattice-gas models of the kind considered in Ref.@2# we did
not introduce any explicit constraint to induce the trapping
the dimers. In our system in fact it naturally arises becaus
geometrical constraints.
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