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Stretched exponential relaxation in a diffusive lattice model
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We studied the single dimer dynamics in a lattice diffusive model as a function of particle density in the high
densification regime. The mean square displacement is found to be subdiffusive both in one and two dimen-
sions. The spatial dependence of the self-part of the van Hove correlation function displays as a function of
a single peak and signals a dramatic slow down of the system for high density. The self-intermediate scattering
function is fitted to the Kohlrausch-Williams-Watts law. The expongrgxtracted from the fits is density
independent while the relaxation timefollows a scaling law with an exponent 2.5.
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I. INTRODUCTION II. MODEL AND COMPUTATIONAL DETAILS

Lattice-gas models of dense fluids have been explored In order to |n\_/est|g.ate .the dynammal properties of dimers
on a square lattice with fixed density we have generated the

[1-3] in order to understand the microscopic details of their . f. . h h L of di ith

slow dynamics and to compare them with the behavior ofSFamr.]g con |gurat!ons t.roug a RSA model of dimers wit

other disordered systems like structural glass formers, spi iffusion in t\.NO d|men5|ons(RSAD-2D) [9.10 .by qute
arlo (MC) simulations. We also performed simulations of

glasses, and colloids. . : . .
Among the lattice modelsandom sequential adsorption e Same model in one dimensiGRSAD-1D) for compari-

(RSA) of particles on a substrate is of particular interest.SON- We have considered a square latticéNefL XL sites,
RSA has been invented to mimic many experimental situa‘-"{'th periodic bon_mdary conditions in both dl_recnons. Two
tions like chemisorption on crystal surfaces, reactions orkinds of dynamical processes can occur in the system,
polymer chains, adsorption of macromolecules and colloidanamely deposition of a dimer on an empty pair of sites and
particles, monolayer and multilayer growth proces$esan  diffusion of a deposited dimer on an empty first neighbor
an extensive review sd¢é,5]). In particular RSA with added site; no overlap of dimers is allowed. The lattice is initially
diffusion (RSAD) has been considered a model which cap-empty and at each MC step one deposition eventone
tures the main features of the compaction dynamics in granudiffusion event is selected with probabilityp (or 1—p),
lar matter[6]. The description of the relaxation processes inwhere 0<p=<1. Dimers can be adsorbed on the lattice in two
the RSAD model has been investigated through the behavigrossible orientationéhorizontal and verticaland can diffuse
of the time density correlation function in a limited number along their own axis. In the case of deposition, the dimer can
of studies and only during the deposition procggs]. occupy a randomly selected pair of sites if they are both
In this paper we explore by computer simulation the equi-empty, otherwise the attempt is rejected. In the case of dif-
librium dynamical properties of a lattice gas of dimers as &usion the randomly selected horizontaértica) particle at-
function of density in two dimensions. The starting configu-tempts to move left or rightup or down, with equal prob-
rations have been produced with a RSAD model where byability. A diffusion event to the rightleft) or up (down) is
deposition and diffusion of particles we reach the desiregossible only if the chosen pair of sites is occupied and the
value for the density. In this way, due to the geometricalcorresponding right(left) or up (down) neighbor site is
frustration, as the dimer density increases trapping configuempty, otherwise the attempt is rejected. As usual the MC
rations that only depend on the local environmgt are  time unit corresponds td deposition and/or diffusion at-
created in the system. The dynamical properties are studiggmpts. We checked that finite-size effects are negligible for
by switching the deposition off. L=40, so in the following we analyze a square lattice with
In Sec. Il we describe the model and the details of oul.=40. We produced 11 starting configurations at densities
Monte Carlo simulation. In Sec. Il we present our results forp=0.60, 0.70, 0.75, 0.80, 0.88, 0.94, 0.96, 0.98, 0.99, 0.995,
the single dimer dynamics as a function of particle density0.998. For each configuration, production runs at constant
In particular we analyze the mean square displacement, thgensity have been obtained by switching the deposition
Van Hove self-correlation function and its space Fourierevents off. In this way we are able to follow the dynamics of
transform, the self-intermediate scattering function. Sectionthe system in an equilibrium situation. In fact, the equilib-
IV is devoted to concluding remarks. rium distribution for this system, where all allowed configu-
rations have the same weight, is a constant. Therefore the
detailed balance condition reduces to two requirements: tran-
* Author to whom correspondence should be addressed. Email agitions to forbidden states are not allowed, and transition
dress: rovere@fis.uniroma3.it from an allowed state to another has the same probability as
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10* . ; . ; TABLE |. Values of the exponents extracted from the fit to the
o power law of the MSD plotted in Fig. 1.
10° L Density 61 85 8516,
10"} 0.60 0.75 0.80 1.07
A g0t | 0.70 0.72 0.80 1.11
. 0.75 0.67 0.79 1.18
10 0.80 0.64 0.79 1.23
107 0.88 0.60 0.74 1.23
10° 0.94 0.54 0.70 1.30
» 0.96 0.52 0.67 1.29
0T P P PP 0.98 0.51 0.60 1.18
t 0.99 0.51 0.48 0.94
0.995 0.51 0.38 0.75

FIG. 1. Log-log plot of the temporal evolution of the MSD for
several different densitiegp=0.60, 0.70, 0.75, 0.80, 0.88, 0.94,

I(i)ﬁies' a(:'egfﬁe(;i'igt’o%g\?é’r &vgvgfe;fvr%rt?nptﬁz tt\;\?(:tgnr:é 'r‘eog;g:lafsrg%%nd 5, are reported in Table I. They are less than 1 for all the
- - densities considered: in particula, and 6, do not exceed,

5 to 120 MC time steps and from 1000 to 60 000 MC time Stelos'respectively 0.75 and O%O WhiC:;'I are tﬁe values found for

For the sake of clarity, fits are reported only for even curves. The,[h I t d ’ ity i —.O éO The diff bet th

exponents extracted from the fit are reported in Table I. € lowest density, 1.ep=0.60. The dillerence between the

two exponents is more marked for intermediate densities

the reverse one. Both these requirements are satisfied by t 88[())< sﬁ;,?égg)' Igtz raljhforh;gre:tﬂg;gs'%) (t:hoegt?rﬁza trr(]eeion
adopted algorithm. A more complete investigation of the ir-, . P 9 e gic
reversible dynamics of these models and discussion of thi vestigated none of the curves shown attains the Brownian

: ; Lo iffusive regime,s,=1.
role of the dimensionality is presented elsewhie These findings can be interpreted in terms of the density
characterizing the degree of motion of particles like the ther-
lll. SINGLE DIMER DYNAMICS mal energy in thermal systems. For low densities single par-
fticles can move freely and the diffusive dynamics is almost

In this section we investigate the dynamical behavior o . . ; : .
this lattice model through the single dimer density Cc)rrela_mdependent of time. Increasing the density particles remain

tors. We have chosen relatively large values of the densitt apped in local transienF configur_atio[islo] an_d diffusipn
(p=0.60), since we are interested in the diffusive dynamic .IOWS dO\;VI‘\. For Vg"rt)r/] high tdenzny the ttrappllng configura-
of the system in the high densification regime where slo tlr?n?' are rozlen ?n gsyls te.m o_le_:ﬁ no .e\t/o ve ar}ytmorg on
dynamics is more likely to occur. The time over which the € Ime scale of our simulations. The existence of trapping

diffusive motion of particles has been followed reaches, inconf|gurat|ons and subdiffusive behavior is in general linked

most cases, POMC time units (because of the statistical 1o the presence of disordgt1] th_at in the p_resent case can
o . . be ascribed to the random barriers associated with the local
noise in the last decade ontyup to 16 is shown in the . : . :
environment determined by the geometrical constraints. The

plots). particle has to overcome these barriers and spend a long time

before detrappingsee[12] for an analogous case in a ran-

A. Diffusion properties dom walk model.

We analyze in the fo”owing the mean square disp'ace_ These dynamical features are not present in the RSAD-1D
ment(MSD) of the particle(r2(t)), defined as model, where we have found a MSD with a density indepen-
dent slope for this case. Nevertheless the behavior is subdif-

) Npart X fusive, with an exponent=0.5 constant over the whole

(re(t))= N\ &4 Iri()=ri(0)[*), (1) time window investigated.
par =

whereNp, = Np/2 is the number density; is the position of B. Density correlator

particlei at timet, and() denotes a time average. In Fig. 1  For a closer analysis of the motion of the dimer we have
we show a log-log plotr2(t)) for RSAD-2D for the differ-  considered the self-part of the van Hove correlation function
ent densities investigated. After an initial transient, which is(SVHCF) Gg(r,t), defined as

more pronounced at high densities, the temporal behavior of
the MSD can be fitted with two power laws. In the first time
region(r?(t))~t°. In the intermediate time region for the
lower densities the MSD shows a bend followed by a slight
increase in the exponent, i.er?(t))~t% with &,> 6, which gives the probability of finding a particle around a
where the exponents depend upon density. The bend beistancer at timet, given that the same particle was at the
comes more evident as the density increases. Value of origin at timet=0. The MSD analyzed in Sec. lllA is the

Npart

Gy(r,t)= . sr=Iri-riO)h), @

Npart =
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FIG. 3. Temporal evolution of the SISF,(q,t) for g=(2#(L
r r s

—1)/L,0). The solid curves correspond to the result of the simula-
FIG. 2. Spatial dependence of the SVHCK(r,t) for different  tions for different densitiesp=0.60, 0.70, 0.75, 0.80, 0.88, 0.94,
densities:p=0.60 (a), p=0.80 (b), p=0.88(c), andp=0.98(d). ~ 0.96, 0.98, 0.99, 0.995, 0.998. The long-dashed curves are fits to the
The curves in each graph correspond to various times, 15, 63,  data according to Ed4). In the inset it is shown the inverse relax-
127, 511, 1023in MC time unit9 from top to bottom on the left  ation time vs density: the squares are the parameters obtained from
side of each graph. Distances on the horizontal axis are measuredtiie fit to Eq.(4) for various density, while the solid curve is the best
lattice spacing units. fit according to Eq(5).

second spatial moment of the SVHCF. Nonetheless, in disall the densities considered in the simulations, the smgller
ordered diffusive systems that do not have a simple behaviois, the more slowlyF¢(q,t) is found to decay. We show in
the SVHCF might contain additional information on the mi- Fig. 3 data forg= (27 (L—1)/L,0) at several different den-
croscopic relaxation mechanisms of the system, which coulgities. Thisg value is chosen of the order of the inverse of the
be smeared out in the MSD. typical size of the trapping region, which we estimate to be
The SVHCEF is shown for our system in Fig. 2 for four of the order of 2—3 lattice spacing8]. As can be seen, the
densities at different times. We have calculated the one dientire dynamical behavior at low-intermediate densities is
mensional SVHCF along the horizontal or the vertical direc-observed in the time window of our simulations, since the
tion. In Fig. 2 we show the SVHCF averaged over the twoSISF decays to zero for such densities. For high values of the
directions. The self-correlation function shows a single pealdensity only a part of the SISF can be observed, due to the
centered around zero for all the times investigated. The apsery slow dynamical relaxation and the freezing of particles
pearance of more than one peak at a given time would hawwhich is also evident in the MSD. The short-intermediate
evidenced the existence of more than one, well distinct, reime behavior of SISF can be fitted with a Kohlrausch-
laxation mechanism for that time. The single peaked strucWilliams-Watts law(KWW)
ture confirms the dynamics to be mastered only by a single
mechanism related to the existence of high entropic barriers Fo(a,t)=exd —(t/7)f], 0<pB<L. 4
generated by configurations in which a particle is IOCaIIyThe curve resulting from this fitting, also shown in Fig. 3,

trapped. It is also seen that at low density the SVHCF is . . . h
Iocgﬁzed at short distance@ypically 1$r$y2) for short reproduces the data obtained from MC simulations quite ac-

times and tends to delocalize for large times, since it is abl urately for several decadgs. A deylatlon of MC results from
to explore more configurations. At higher densities we ob- g.(4) is observable only in th? tails of the correlators. The
serve a “clustering” of the varioﬂs curves fordr < 2.5[this collapse of correlators onto a single curve when plotted ver-
effect is particularly evident in Fig.(8)]: this is thé signa- sust/r(p) demonstrates the existence of a well defined scal-

ture of the fact that the movement of particles drasticallyIng law on sevgral degades for this kind .Of systems. 'In the

slows down at such densities. range _of density cons_ldered, the stretching exporens

essentially constant, with a value0.68, the density depen-

dence being reflected only in the relaxation time
Furthermore, we have found that the behavior@krsus
The space Fourier transform of the SVHCF, i.e., the selfp follows the scaling law

intermediate scattering functidiSISPH F4(q,t), is given by

C. Intermediate scattering function

Tt =Alpe=p)”. ()
N
1 part i L i i i i
F.(q,t)= explig-[ri(t)—r (0T}, 3 This fit is shown in the inset of Fig. 3 together with the
L&D Npartizl Aia-Lr®-r(0)]} 3 points determined from the parameters of E. As can be

seen from the figure, Eq5) applies satisfactorily in the en-
where q=(qy,qy) is the discrete wave vectolqy, tire range of densities considered. Our estimates yield
=2mn, /L with n, , an integer between 0 arid—1). For ~ A=0.0023,y=2.5, andp.=1.0. Given the uncertainties in
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the fit, this value found fop. cannot be distinguished from resembling that of the slow relaxation of structural glass
the maximal density reachable in this system, which hagormers are found.
been found to be~0.998 in numerical simulationgsee The most interesting results came from the SISF analysis.
[9,10]). This would suggest that there is no dynamical tran-We have found that this correlator in the space has a well
sition in this model, i.e., no critical densifyower than the defined scaling behavior with density that can be described
maximal density exists at which a structural arrest of the with a high degree of accuracy by the KWW function in
system occurs. It is important to stress that the relaxatiomost of the time region investigated. This function is well
time obeys the power law equati@®), which has the same known to reproduce many features of disordered systems,
kind of scaling found in many glassy systems and is theand is connected to fractality in configurational space
signature of a sluggish dynamical behavior. The existence dfL3,14]. The exponent of the stretched exponential function
a power law behavior for as a function of density and the g is density independent and the relaxation time follows a
validity of the KWW law are novel and interesting points for power law with an exponeng in the range of those of struc-
systems of this kind. It would be interesting to investigate intural glass formergl3]. The power law predicts a divergence
the future ther and 8 dependence on the wave vector to of the relaxation time for density around 1. From these find-
check on the range of validity of both the KWW law and of ings it can be consistently derived that for this nonthermal
the power law. system the role of thermal energy is played by the density.
We correspondingly find a subdiffusive behavior in the
IV. CONCLUSIONS MSD. The slowdown of the system that becomes more sig-
] ~nificant as density is increased can be attributed to transient
We presented a Monte Carlo study of the single dimefrapping configurations. We point out that with respect to
density correlators for a randomly diffusive model of dimerslattice-gas models of the kind considered in Hé&f. we did
on a square lattice as function of density. For each densityot introduce any explicit constraint to induce the trapping of

the starting configurations have been generated through e dimers. In our system in fact it naturally arises because of
RSAD-2D model. We found that the dynamical behavior isgepometrical constraints.

related with the system dimensionality and that the diffusive

dynamms is no.n-Br'oyvnlan for the time regimes |nvest|gat¢d. ACKNOWLEDGMENTS
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